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1. The FLIP algorithm

The FLIP algorithm is a natural algorithm for solving the
Max-Cut problems and requires exponential time before
reaching a local maximum in the worst-case scenario ("2,
Nevertheless, based on the framework of smoothed anal-
ysis, the smoothed complexity of the FLIP algorithm for
local Max-Cut is quasi-polynomial, where the degree of
smoothing is determined by the magnitude of perturba-
tions 41,

The FLIP algorithm starts with an initial partition and
subsequently moves nodes individually to the opposite
side if the flip enhances the weight of the cut. This pro-
cess persists until no further local improvements can be
achieved. Mapping to the Ising model, the Hamiltonian
H = —Y ;- wyXx;, quantity replaces the cut value W =
%Z<l,k> wix(1 —xx;) as cost function, and the movement of
the vertex corresponds to the flip of the spin.

2. Implementation of noise-injected SPIM
2.1. Experimental setup

The experimental configuration for the noise-injected
SPIM is illustrated in Fig. 1 (a). A coherent beam at 633nm
originating from a stabilized red HeNe laser is injected
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Algorithm 1 The FLIP Algorithm
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Input: A complete graph G(V,E) with edge weights
oy, VLkeV, 1 #k
Output: A cut §,,S,:5,US, =V, §;NS, =0 with the max
cut value cut(S,,S,)
1: Initial spin state (node patition) x < x, € {—1,1}", flip
number n
2: fori=1:ndo
Randomly flip one spin to generate a new spin
vector x"";

@

4: Hyew = =Y i Wik 5
5: if H,., < H then

6: X+ x" H <+ H,,
7 end if

8: end for

9: Return x;

10: for j=1:N do

11: if x; =1 then

12: add j* to S,

13: else

14: add j* to S,

15: end if

16: end for

17 W= %Z<l,k> Wl.k(1 _xlxk)
18: Return cut §y,S;; cut value W
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Fig. 1.

The experiment system of noise-injected SIPM. (a) The architecture of SIPM with phase-amplitude modulation based on

Euler’ s formula. (b) Image captured with CCD. (c) Image characterized by random noise at the noise level of 0.2. (d) Image containing

artificially injected noise. .

to a variable neutral density filter. A 40X beam expan-
sion setup is positioned behind the filter to generate a
large spot, ensuring sufficient coverage of the employed
reflective phase-only SLM (HOLOEYE LETO-3-CFS-127,
1920x 1080 pixels). The implementation of amplitude and
phase modulation is crucial for the mapping of combina-
torial optimization problems. In the experiment, we adopt
the phase-amplitude modulation based on Euler’ s for-
mula ®l. This modulation scheme simplifies system design
by using only one SLM, thus effectively addressing the
inherent challenge of pixel alignment in spatial light sys-
tems. In order to reduce position deviation, each spin is
encoded by a macropixel with 10-by-10 pixels on SLM
with a pixel pitch of 6.4 pnm. A beam splitter is placed
opposite the SLM in order to separate the reflected light.
Following the Fourier transform of the lens (focal length
f =150mm ), the light is concentrated at the focal point,
and its central light intensity shows an expression akin
to the Hamiltonian. We measure the intensity distribution
on charge-coupled device (CCD), and the obtained images
(see Fig. 1 (b)) are subsequently transmitted to the CPU
for the purpose of artificial noise injection. The 10 x 10
pixels covering the complete center spot are selected as the
detection area with a pixel pitch of 4.54 pm.

2.2. Noise-injected method

Adjusting the exposure time to indirectly control the
intrinsic noise of the system is considered an easy-to-
operate approach for noise injection . Nonetheless, quan-
tifying the noise level and extending this method to other

analog hardware poses challenges. To achieve a control-
lable noise source, we generate a normal distribution with
a mean value of 0 based on the size of the acquired image,
shown in Fig. 1 (c) . The variance of this random matrix
corresponds to the level of noise. The acquired image is
then combined with additive white noise to produce the
noise-injected image, shown in Fig. 1 (d).

Algorithm 2 The SG Algorithm

Input: A complete graph G(V,E) with edge weights
O, Vi, jEV, i#]

Output: A cut §,,5,:5,US, =V, §;NS, =0 with the max
cut value cuz(S,,S,)

1. V=V

2: Pick the maximum weighted edge (x,y)

3: cut(S),5,) = @,

4: V' =V"\{x,y}

5. S ={x}; S, ={y}

6: for j=1:n—2 do

7: for i€V’ do

8: score(i) = |0(i,S)) — 0(i,S,)]

9: end for
10: Choose the vertex i* with the maximum score
11 if (i,S,)>w(i,S,) then
12: add i* to S,
13: else
14: add i* to S,
15: end if
16: V' =V\{i}
17: cut(S,S,) = cut(S,,S,) + max{o(i*,S,) — 0(i*,S,)}
18: end for
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Injected noise level

Experimental results the Max-Cut problems with different density. (a)-(e) Experimental results for solving the Max-Cut

problem with density= 0.5, 0.6, 0.7,0.8 0.9, 1.0 using noise-injected SPIM, compared with the SG algorithm. .

It should be mentioned that the variance of the noise
needs to be normalized within the range of [0, 1], otherwise
the noise will overwhelm the original image. The noise-
injected image intensity will replace the original image
intensity as the cost function of the FLIP algorithm in the
electrical threshold calculation, realizing a semi-random
input process in the smoothed analysis theory. Moreover,
to avoid trapping in local optima, we incorporate the
concept of simulated annealing. During the experiment,
inferior solutions are accepted with a modest probability,
providing the possibility of jumping out of the local opti-
mum to explore diverse regions of the solution space. The
outcome of the soft judgment will determine the flip of the
spins in the next iteration. And the noise vector is updated
independently in each iteration.

3. The SG algorithm for solving the Max-Cut
Problems

Algorithm 2 shows the SG algorithm for solving the Max-
Cut Problems!”. For obtaining the maximum cut value,

the SG algorithm starts from the first vertex and divides
all the vertices into two subsets one by one according to
a certain order and rule. The division of vertices is based
on the calculation of the score of each point, and there
may be more than one point with the maximum score. A
fully connected graph certainly increases the likelihood of
multiple choices, and the SG algorithm will not continue to
determine which of these edges or points satisfy the same
condition better or worse but will simply choose the first
vertex that satisfies the condition.

4. the optimal noise levels and the threshold for
noise tolerance for various graph densities

We expand our experimental scope to address the weighted
Max-Cut problems across a range of graph densities of
[0.5,1.0]. Fig. 2 illustrates the effect of the injected noise on
different Max-Cut Instances in experiments, respectively.
And the optimal noise levels and the threshold for noise
tolerance for different graph densities are summarized in
Table 1. And in Fig. 3, we plot the performance gain of the
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SPIM in solving Max-Cut problems with varying graph
densities relative to the SG algorithm. The outcomes of
the SG algorithm serve as standards by which to evaluate
the effectiveness of SPIMs.

Table 1. Optimal noise levels and tolerance thresholds
of the SPIM for graph densities of [0.5,1.0]. .
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Flow 3 The two-stage optoelectronic co-optimization
method

Density  Optimal noise level Noise tolerance threshold

0.5 0.06 0.04-0.07
0.6 0.04 <0.06
0.7 0.06 0.02-0.07
0.8 0.04 0.03-0.06
0.9 0.05 0.02-0.06
1.0 0.05 0.04-0.07
0.8
0.7 b = ™ave (Optimal) = a3ave (Blind)
0.6 F —©—max (Optimal) —6—max (Blind)
.g 0.5 F )
© 04 t
03 :
02 r
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Density
Fig. 3. Performance gain of the SPIM compared to the SG

algorithm under blind and optimal noise levels for graph den-
sities of [0.5,1.0]. .

5. the two-stage optoelectronic co-optimization
method

The smoothing effect alters the energy landscape of the
original Ising model, and this effect exhibits a global ori-
entation rather than being confined to specific regions.
The smoothness level within the system can be regulated
by adjusting the magnitude of the injected noise, which
is beneficial during the initial stages of the search as it
helps in avoiding premature convergence to local optima.
However, the proportion of globally optimal solutions in
the majority of combinatorial optimization problems is
significantly low. Consequently, once the globally optimal
solution is smoothed out by noise (perhaps even the spon-
taneous noise of a photonic Ising machine), it inevitably
leads to a failure in the ground state search. This makes
us realize that any noise is not expected in the later stages
of the convergence. Therefore, we would like to add the
exact search in the electric domain to correct the smooth-
ing effect caused by spontaneous noise of the photonic Ising
machine.

Input: An N-dimension Ising model with the interaction
coefficient J;;, annealing coefficient A
Output: Ground state x, Ground Hamiltonian H
1: procedure ONE(Fast annealing) > SPIM
2: Random spin vector x < x, € {—1,1}", Hamiltonian
H < H,, annealing temperature T < T,

3: while T > T,,, do

4: Randomly flip several spins;

5: Update SLM;

6: Detect the intensity I, by CCD;
7 Calculate H,,,;

8: if ||l — Low||l» < ||Ir — ||, then
9: X 4 Xpor; H— H,,,

10: else

11: if rand(0,1) < e "™ then
12: X & Xy, H < H,,,,

13: end if

14: end if T« AT

15: end while

16: Return X, p0,Hopro

17: end procedure

18: procedure Two(Exact search)
19: X < Xoproy H < H,,,

20: while T > T,,, do

> CPU

21: Randomly flip one spin;

22: Calculate H,,,;

23: if H,,, <H then

24: X 4 Xpo; H < H,,,

25: else

26: if rand(0,1) < e~ then
27: X 4 Xy, H < H,,,,

28: end if

29: end if T« A*T

30: end while

31: Return X..,H.ec
32: end procedure

The algorithm 3 shows the flow of the two-stage opto-
electronic co-optimization method for solving combinato-
rial optimization problems. The two processes consist of
the fast annealing stage and the exact search stage, done on
the SPIM and CPU, respectively. A modified FLIP algo-
rithm is applied in the SPIM, where we flip multiple spins
in each iteration to speed up convergencel®. Conversely,
the exact search conducted within the CPU employs a sin-
gle spin-flip strategy to identify superior solutions in the
vicinity of the solution X,,, provided by the SPIM during
the initial stage.
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